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Abstract

An astigmatic mode converter consists of a pair of cylindrical lenses which, when properly located and oriented, can
Ž . Ž .transform a Hermite–Gauss mode HG with rectangular symmetry into a Laguerre–Gauss mode LG with cylindricalnm nm

Ž Ž .symmetry see E. Abramochkin, V. Volstnikov, Opt. Commun. 83 1991 123; M.W. Beijersbergen, L. Allen, H.E.L.O. van
Ž . Ž .der Veen, J.P. Woerdman, Opt. Commun. 96 1993 123; M.J. Padgett, J. Arlt, N. Simpson, Am. J. Phys. 64 1996 77; and
Ž . .J. Courtial, M.J. Padgett, Opt. Commun. 159 1999 13 . In this paper we discuss how the conservation of phase space area

determines the selection rules on which mode conversions are possible. A discussion of the beam quality factor M 2 is also
given for both Hermite–Gauss and Laguerre–Gauss modes. q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

w xIn Refs. 1–4 , the authors describe a so-called astigmatic mode converter consisting of a pair of cylindrical
Ž .lenses that will convert a monochromatic Hermite–Gauss mode HG with rectangular symmetry into anm

Ž . w xLaguerre–Gauss mode LG with cylindrical symmetry. We will use the notation of Ref. 2 to describe thenm

normalized electric field of Hermite–Gauss and Laguerre–Gauss modes. The definitions are as follows:

HG 2 2 2 2C x qy x qynmHGu x , y , z s exp yik exp yŽ .nm 2w z 2 R z w zŽ . Ž . Ž .

x y' 'Pexp yi nqmq1 c z H 2 H 2 1Ž . Ž . Ž .n mž / ž /w z w zŽ . Ž .
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and
< <LG 2 nymC r rnmLG 'u x , y , z s exp yik exp yi nym f 2Ž . Ž .nm ž /w z 2 R z w zŽ . Ž . Ž .

2 2r rŽ .min n ,m < nym <P y1 exp y exp yi nqmq1 c z L 2 , 2Ž . Ž . Ž . Ž .minŽn ,m.2 2ž /w z w zŽ . Ž .
Ž . llwhere H x is the Hermite polynomial of order n and L is the generalized Laguerre polynomial andn p

1r2 1r22 2
HG yŽnqm.r2 LGC s 2 , C s min n ,m !, 3Ž . Ž .nm nmž / ž /pn!m! pn!m!

pw2
0

z ' , 4Ž .R
l

z 2 qz 2Ž .R
R z ' , 5Ž . Ž .

z

1 z 2 qz 2Ž .R2kw z ' , 6Ž . Ž .
2 zR

z
c z 'arctan . 7Ž . Ž .

zR

w xIn Ref. 2 it is shown that a HG mode whose principal axes are rotated by 458 with respect to the firstnm

cylindrical lens of the astigmatic mode converter will be converted into a LG with the same mode numbersnm
Ž .n,m . This result can be thought of as a ‘selection rule’ that limits which HG mode is converted to whichnm

LG mode. This brings to mind the question of what determines these selection rules.nm
w xIn 2 the discussion focuses on the similarity of a 458 rotated HG modes and a LG when both arenm nm

expanded in a complete set of Hermite–Gauss modes oriented along the principal axes. The astigmatic mode
converter modifies the Guoy phase differently in the two principal planes and thereby converting the mode from

Ž .Hermite–Gauss to Laguerre–Gauss in character with the same set of mode numbers n,m . In this paper we will
discuss another criteria that the selection rules must satisfy.

Since symplectic ABCD matrices can characterize the cylindrical lenses, the phase space area of the light
beam must remain unchanged in traversing the mode converter. In this paper we will show that it is this
principle of phase space area conservation that governs the selection rules for mode conversion. We begin with
a discussion of the phase space of light beams and show how this can be used to determine the selection rules
for astigmatic mode converters. In the process we will also discuss the laser beam quality factor M 2 that
frequently appears in the literature.

2. Uncertainty relations and phase space area

Quantum mechanics restricts the product of the uncertainty in position and momentum for a particle in one
w xdimension 5

"
D xPD p G , 8Ž .x 2

&2 22 2 2 2Ž . Ž . < Ž . < Ž . Ž . < Ž . <where Dx 'H xyx C x d x and Dp 'H p yp C p d p . The minimum uncertainty prod-x x x x x

uct, corresponding to the equal sign in the above equation, occurs for a Gaussian wave packet of a free particle.



( )J.B. MurphyrOptics Communications 165 1999 11–18 13

Ž .The uncertainty product can be viewed as setting a lower bound on the x, p phase space area. In quantumx

mechanics the evolution of the particle is governed by unitary transformations that insure that the phase area is
Žconserved as the system evolves in time. The shape of the occupied phase space may change but the area or

. w xvolume in higher dimensional systems is an invariant 6 .
™™For a monochromatic, two-dimensional light beam propagating in the z-direction the momentum is ps"k.

w xThus the literal translation of the above uncertainty relation for the transverse coordinates becomes 7
21

D xPDk PD yPDk G . 9Ž .x y ž /2
Ž .If we define the angles, u sk rk and u sk rk, and k'2prl, we can write Eq. 9 asx x y y

2
l

D xPDu PD yPDu G . 10Ž .x y ž /2

It can be seen that l is for ‘light’ particles what " is for massive particles. In the case of light, the minimum
uncertainty product occurs for a fundamental Gaussian mode HG with the uncertainties defined in terms of the00

second moments of the respective quantities.
If the propagation of the light beam is governed by symplectic ABCD matrices, such as simple drifts and thin

w xlenses, the phase space area occupied by the light beam is an invariant 8 . The two cylindrical lenses that
comprise the astigmatic mode converter can be represented by symplectic ABCD matrices so the phase space
area of the 45 degree-rotated HG mode at the input should equal that of the LG mode at the output.nm nm

Ž .In what follows we shall discuss under what conditions Eq. 10 is correct and consider generalizations of
this phase space conservation relation. First we will make contact with the beam quality factor, M 2, that has

w xbeen used to characterize the phase space area for light beams 9 . We will then compute the phase space area
for Hermite–Gauss and Laguerre–Gauss modes and show that its invariance governs the selection rules for
mode conversion.

3. Beam quality factor

2 w xThe beam quality factor M was introduced in 9 to characterize how a given light beam differs from a
Ž . w xfundamental Gaussian mode HG or LG . For one dimension, Ref. 9 gives the following definition:00 00

Real beam space y bandwidth product
2M ' . 11Ž .x Fundamental Gaussian beam space y bandwidth product

In the terminology of this paper, the ‘space-bandwidth product’ is called the beam ‘phase space area’. Thus M 2

is simply a measure of how much larger the phase space area is for a given beam as compared to the minimum
area of a fundamental Gaussian mode. Additional discussion of the beam quality factor M 2 can be found in

w xRefs. 10–16 and the citations therein.
w xRef. 9 states that Hermite–Gauss modes HG can be characterized by a pair of beam quality factors fornm

the two transverse dimensions

M 2 s2nq1, M 2 s2mq1, 12Ž .x y

or a single ‘cylindrical quality factor’

M 2 qM 2
x y2M s snqmq1. 13Ž .r 2

w xFor Laguerre–Gauss modes LG Ref. 9 defines the cylindrical quality factor asnm

2 < <M s2 pq ll q1, 14Ž .r

Ž . w xwhere we let p'min n,m and ll'nym to rectify the notational differences between our paper and Ref. 9 .



( )J.B. MurphyrOptics Communications 165 1999 11–1814

Which of these beam quality factors do we use to determine if the phase space area of the input HG modenm

to the astigmatic mode converter is preserved on conversion to the LG mode at the output? Using thenm
Ž . Ž . 2 Ž . Ž .definitions in Eqs. 1 and 2 it can be seen that M as defined in Eqs. 13 and 14 satisfies the selection ruler

2 Ž .that M is the same for both a HG mode and a LG mode with the same mode numbers n,m . However,r nm nm

M 2 characterizes only the radial coordinate and not the entire transverse phase space area, it gives informationr

about the average behavior of the transverse phase space. It is important to obtain detailed information on the all
2 2 2 2Žbeam parameters which are characterized by a full set of second moments x , y , xy, k , k , k k ,x y x y

.xk , xk , yk , and yk and to determine the total phase space area occupied by both the HG and the LGx y x y nm nm

modes.
In the next section we consider a detailed characterization of the beam phase space area for each type of

mode and discuss it’s connection to the beam quality factor. It will be seen that M 2 will appear in the diagonalr

elements of the second moment matrix for a LG but M 2 alone is not sufficient information to obtain thenm r

complete phase space area for a LG mode which has off-diagonal elements in the second moment matrix.nm

4. Invariant phase space area

w xFollowing Ref. 17 we introduce the 4=4, real, symmetric matrix of the second order moments of the
positions and wave vectors:

2x xy xk xkx y

2xy y yk ykx yHG ,LGP s , 15Ž .nm 2xk yk k k kx x x x y� 0
2xk yk k k ky y x y y

22 2 HG,LG 2< Ž . <where x 'HHx u x, y, zs0 d x d y with similar expressions for xy and y . Note that we need onlynm

evaluate these moments at the waist zs0 and we have assumed all of the first order moments vanish. Taking
2HG,LG 2 2 HG, LGŽ . < Ž . <the Fourier transform of u x, y, zs0 allows us to calculate k 'HHk u k ,k , zs0 dk dk ,˜nm x x nm x y x y

2again there will be similar expressions for k k and k .x y y

The remaining off-diagonal moments require the density in both positions and wave vectors simultaneously.
w xThis is precisely the role played by the Wigner distribution function 6,8,18–20

a b a b
)HG ,LG HG ,LG HG ,LGW x , y ,k ,k ' u xq , yq u xy , yyŽ . HHnm x y nm nmž / ž /2 2 2 2

Pexp yi k aqk b da db. 16Ž .Ž .x y

We will not reproduce here the complicated expressions for the Wigner distribution functions for Hermite–
w xGauss and Laguerre–Gauss modes, which can be found in Refs. 19,20 . A typical moment is then computed as:

HG ,LGyk ' yk W x , y ,k ,k d x d y dk dk . 17Ž .Ž .HHHHx x nm x y x y

Note that all the moments can be computed directly from the Wigner function as its marginal distributions are
< HG,LG Ž . < 2 < HG,LG Ž . < 2u x, y, zs0 and u k ,k , zs0 .nm nm x y

The P matrix is the generalization that is required to compute the two dimensional phase space area when
Ž .there is coupling between the various factors x, y,k ,k resulting in the off-diagonal terms. We define thex y

Ž .phase space area PSA as

HG ,LG HG ,LGPSA ' det P . 18Ž .(nm nm
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The P matrix as defined has the useful property that its determinant is invariant under rotations about the z
w x Ž .axis 21 . We are then free to orient our x, y coordinate system in a fashion that simplifies the computation of

the moments. Thus to compute the PSA for our input Hermite–Gauss mode when can ignore the fact that it is
rotated by 458 which greatly simplifies the results. Note that this makes physical sense, as simply rotating the
coordinate system should not change the phase space area.

Ž .For the Hermite–Gauss modes as defined in Eq. 1 , all the off-diagonal terms in the P matrix vanish
yielding

° 2 ¶w
2nq1 0 0 0Ž .

4
2w

0 2mq1 0 0Ž .
4HGP s . 19Ž .nm 1

0 0 2nq1 0Ž . 2w
1

0 0 0 2mq1Ž .¢ ß2w

The phase space area is then simply given as

2nq1 2mq1Ž . Ž .
HG HG 2 2 2 2PSA s det P s x k y k s . 20Ž .((nm nm x y 4

Note that in this case where all the off-diagonal terms vanish, our generalized definition of the PSA reduces to
Ž .the one given earlier in Eq. 9 . Both the P matrix and the PSA can be written in terms of the beam quality

Ž .factors defined in Eq. 12 :

° 2 ¶w
2M 0 0 0x 4

2w
20 M 0 0y 4HGP s , 21aŽ .nm 1

20 0 M 0x 2w
1

20 0 0 M¢ ßy 2w

2 2M Mx yHG HGPSA s det P s . 21bŽ .(nm nm 4

As required, we have recovered the physical significance of M 2 and M 2 as the measures of the increase inx y

the phase space area for the higher order modes as compared to the fundamental Gaussian mode HG .00
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Ž .For the Laguerre–Gauss modes as defined in Eq. 2 , the situation is more complicated as not all the off
Ž .diagonal terms in the P matrix vanish. Using our earlier definitions, p'min n,m and ll'nym, the P matrix

for the Laguerre–Gauss modes can be written as

° 2 ¶w ll
< <2 pq ll q1 0 0Ž .

4 2
2w ll

< <0 2 pq ll q1 y 0Ž .
4 2LGP s . 22Ž .nm

ll 1
< <0 y 2 pq ll q1 0Ž . 22 w

ll 1
< <0 0 2 pq ll q1Ž .¢ ß22 w

The phase space area in this case is

< < < <2 pq ll y llq1 2 pq ll q llq1 2nq1 2mq1Ž . Ž .Ž . Ž .
LG LGPSA s det P s s . 23Ž .(nm nm 4 4

We arrived at the desired result that the phase space area of the 458 rotated HG mode and the LG modenm nm
Ž .with the same mode numbers n,m are identical. As noted in the introduction, this is as it should be because the

cylindrical lenses that make up the mode converter are symplectic elements. The selection rule that the mode
Ž .numbers n,m for the input HG mode and the output LG mode be the same is dictated by the conservationnm nm

of phase space area.
Ž . Ž . 2Note that Eqs. 22 and 23 can be written in terms of M as follows:r

° 2 ¶w ll
2M 0 0r 4 2

2w ll
20 M y 0r 4 2LGP s , 24aŽ .nm

ll 1
20 y M 0r 22 w

ll 1
20 0 M¢ ßr 22 w

4 2M y llŽ .rLG HGPSA s det P s . 24bŽ .(nm nm 4

It can be seen that M 2 is useful for characterizing the diagonal moments but provides no information on ther

off diagonal elements. As such M 2 only gives a complete characterization of the phase space area when lls0.r

Table 1
Comparison of second moments for HG and LG modes to the fundamental Gaussian Mode HGn m n m 00

Diagonal moments HG LGn m n m

2 2 2 2< <x r x 2nq1s M 2 pq ll q1s Mn m 00 x r
2 2 2 2< <y r y 2mq1s M 2 pq ll q1s Myn m 00 r
2 2 2 2 2 2< <k rk su ru 2nq1s M 2 pq ll q1s Mx ,n m x ,00 x ,n m x ,00 x r
2 2 2 2 2 2< <k rk su ru 2mq1s M 2 pq ll q1s My,n m y,00 y,n m y,00 y r
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For an arbitrary light beam, the full 4=4 matrix of second order moments is required and the phase space
Ž .area occupied by the light beam is given by Eq. 18 . If a generalized beam quality factor is desired it should be

defined as follows:

w xdet P(Phase space area for an arbitrary beam nm4 w xM ' s s4 det P . 25( Ž .tot nmMinimum phase space area 1r4

For a HG mode, M 4 sM 2 PM 2 and for a LG mode M 4 sM 4 y ll 2.nm tot x y nm tot r

5. Discussion of the diagonal moments

In Table 1 we compare the diagonal terms of the P matrix for general HG and LG modes to thenm nm

corresponding value for the fundamental mode HG sLG . This is done to emphasis the fact that although all00 00

the modes have the same waist parameter w , this parameter does not characterize the spread in transverse0

positions of the higher order modes at the waist or the spread in far field divergence angles. As pointed out in
w x Ž . Ž .22,23 , the spread in both positions x, y and far-field divergence angles u ,u is best characterized by thex y

Ž .second moments of these quantities and they increase as the mode numbers n,m increase. The relevant
expressions are listed in Table 1. It can be seen that the spread in both the position and far-field angle is an

Ž .increasing function of the mode numbers n,m .

6. Concluding remarks

In this paper we have considered the second order moments and the phase space area of Hermite–Gauss and
Laguerre–Gauss modes. We have shown that the principle of conservation of phase space area is responsible for
the selection rule governing the conversion of Hermite–Gauss modes into Laguerre–Gauss modes using the

w xastigmatic mode converter described in Refs. 1–4 . Finally we have discussed how these results are related to
beam quality factors in common use to characterize light beams and the generalization of these beam quality
factors to arbitrary light beams.
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